Multilevel preconditioning of graph-Laplacians: Polynomial approximation of the pivot blocks inverses

نویسندگان

  • Petia T. Boyanova
  • Ivan Georgiev
  • Svetozar Margenov
  • Ludmil Zikatanov
چکیده

We consider the discrete system resulting from mixed finite element approximation of a second-order elliptic boundary value problem with Crouzeix-Raviart nonconforming elements for the vector valued unknown function and piece-wise constants for the scalar valued unknown function. Since the mass matrix corresponding to the vector valued variables is diagonal, these unknowns can be eliminated exactly. Thus, the problem of designing an efficient algorithm for the solution of the resulting algebraic system is reduced to one of constructing an efficient algorithm for a system whose matrix is a graph-Laplacian (or weighted graph-Laplacian). We propose a preconditioner based on an algebraic multilevel iterations (AMLI) algorithm. The hierarchical two-level transformations and the corresponding 2 2 block splittings of the graph-Laplacian needed in an AMLI algorithm are introduced locally on macroelements. Each macroelement is associated with an edge of a coarser triangulation. To define the action of the preconditioner we employ polynomial approximations of the inverses of the pivot blocks in the 2 2 splittings. Such approximations are obtained via the best polynomial approximation of x 1 in L1 norm on a finite interval. Our construction provides sufficient accuracy and moreover, guarantees that each pivot block is approximated by a positive definite matrix polynomial. One possible application of the constructed efficient preconditioner is in the numerical solution of unsteady Navier-Stokes equations by a projection method. It can also be used to design efficient solvers for problems corresponding to other mixed finite element discretizations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cbs Constants for Graph-laplacians and Application to Multilevel Methods for Discontinuous Galerkin Systems

The goal of this work is to derive and justify a multilevel preconditioner for symmetric discontinuous approximations of second order elliptic problems. Our approach is based on the following simple idea. The finite element space V of piece-wise polynomials of certain degree that are discontinuous on the partition T0 is projected onto the space of piece-wise constants on the same partition. Thi...

متن کامل

Effective and Robust Preconditioning of General SPD Matrices via Structured Incomplete Factorization

For general symmetric positive definite (SPD) matrices, we present a framework for designing effective and robust black-box preconditioners via structured incomplete factorization. In a scaling-and-compression strategy, off-diagonal blocks are first scaled on both sides (by the inverses of the factors of the corresponding diagonal blocks) and then compressed into low-rank approximations. ULV-ty...

متن کامل

Algebraic Multilevel Preconditioning of Finite Element Matrices Based on Element Agglomeration

We consider an algebraic multilevel preconditioning method for SPD matrices resulting from finite element discretization of elliptic PDEs. In particular, we focus on non-M matrices. The method is based on element agglomeration and assumes access to the individual element matrices. The coarse-grid element matrices are simply Schur complements computed from local neighborhood matrices (agglomerat...

متن کامل

Preconditioning Techniques for Large LinearSystems: A Survey

This article surveys preconditioning techniques for the iterative solution of large linear systems, with a focus on algebraic methods suitable for general sparse matrices. Covered topics include progress in incomplete factorization methods, sparse approximate inverses, reorderings, parallelization issues, and block and multilevel extensions. Some of the challenges ahead are also discussed. An e...

متن کامل

An Algebraic Multilevel Preconditioner with Low-rank Corrections for General Sparse Symmetric Matrices

This paper describes a multilevel preconditioning technique for solving linear systems with general sparse symmetric coefficient matrices. This “multilevel Schur low rank” (MSLR) preconditioner first builds a tree structure T based on a hierarchical decomposition of the matrix and then computes an approximate inverse of the original matrix level by level. Unlike classical direct solvers, the co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mathematics and Computers in Simulation

دوره 82  شماره 

صفحات  -

تاریخ انتشار 2012